Общая характеристика учебного предмета "математика"
Рабочая программа по математике для обучающихся 6 классов разработана на основе ФГОС основного общего образования с учетом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся.
В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки.
Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.
Это обусловлено тем, что в наши дни растет число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей.
Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчеты и составлять алгоритмы, находить и применять формулы, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределенности и понимать вероятностный характер случайных событий.
Одновременно с расширением сфер применения математики в современном обществе все более важным становится математический стиль мышления, проявляющийся в определенных умственных навыках. В процессе изучения математики в арсенал приемов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия.
Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые.
В процессе решения задач - основой учебной деятельности на уроках математики - развиваются также творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.
Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.
Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
Приоритетными целями обучения математике в 6 классе являются:
Основные линии содержания курса математики в 6 классе - арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии
Также в курсе происходит знакомство с элементами алгебры и описательной статистики.
Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приемам прикидки и оценки результатов вычислений.
Изучение натуральных чисел продолжается в 6 классе знакомством с начальными понятиями теории делимости. Другой крупный блок в содержании арифметической линии - это дроби. К 6 классу отнесен второй этап в изучении дробей, где происходит совершенствование навыков сравнения и преобразования дробей, освоение новых вычислительных алгоритмов, оттачивание техники вычислений, в том числе значений выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между ними, рассмотрение приемов решения задач на дроби.
В начале 6 класса происходит знакомство с понятием процента. Особенностью изучения положительных и отрицательных чисел является то, что они также могут рассматриваться в несколько этапов.
В 6 классе в начале изучения темы "Положительные и отрицательные числа" выделяется подтема "Целые числа", в рамках которой знакомство с отрицательными числами и действиями с положительными и отрицательными числами происходит на основе содержательного подхода. Это позволяет на доступном уровне познакомить учащихся практически со всеми основными понятиями темы, в том числе и с правилами знаков при выполнении арифметических действий.
При обучении решению текстовых задач в 6 классе используются арифметические приемы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 6 классе, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приемами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.
В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве "заместителя" числа.
В курсе "Математики" 6 класса представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию.
Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.
Согласно учебному плану в 6 классе изучается интегрированный предмет "Математика", который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры. Учебный план на изучение математики в 6 классе отводит не менее 5 учебных часов в неделю, всего 170 учебных часов.
Натуральные числа
Арифметические действия с многозначными натуральными числами. Числовые выражения, порядок действий, использование скобок. Использование при вычислениях переместительного и сочетательного свойств сложения и умножения, распределительного свойства умножения.
Округление натуральных чисел. Делители и кратные числа; наибольший общий делитель и наименьшее общее кратное. Делимость суммы и произведения. Деление с остатком.
Дроби
Обыкновенная дробь, основное свойство дроби, сокращение дробей. Сравнение и упорядочивание дробей. Решение задач на нахождение части от целого и целого по его части. Дробное число как результат деления. Представление десятичной дроби в виде обыкновенной дроби и возможность представления обыкновенной дроби в виде десятичной. Десятичные дроби и метрическая система мер. Арифметические действия и числовые выражения с обыкновенными и десятичными дробями.
Отношение. Деление в данном отношении. Масштаб, пропорция. Применение пропорций при решении задач. Понятие процента. Вычисление процента от величины и величины по ее проценту. Выражение процентов десятичными дробями. Решение задач на проценты. Выражение отношения величин в процентах.
Положительные и отрицательные числа
Положительные и отрицательные числа. Целые числа. Модуль числа, геометрическая интерпретация модуля числа. Изображение чисел на координатной прямой. Числовые промежутки.
Сравнение чисел. Арифметические действия с положительными и отрицательными числами. Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.
Буквенные выражения
Применение букв для записи математических выражений и предложений. Свойства арифметических действий. Буквенные выражения и числовые подстановки. Буквенные равенства, нахождение неизвестного компонента. Формулы; формулы периметра и площади прямоугольника, квадрата, объема параллелепипеда и куба.
Решение текстовых задач
Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором всех возможных вариантов. Решение задач, содержащих зависимости, связывающих величины: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объем работы. Единицы измерения: массы, стоимости; расстояния, времени, скорости. Связь между единицами измерения каждой величины.
Освоение учебного предмета "Математика" должно обеспечивать достижение на уровне основного общего образования следующих личностных, метапредметных и предметных образовательных результатов...
Рабочая программа учебного предмета "Математика" для 6 класса на 2022-2023 учебный год публикуется в сокращении. Скачать рабочую программу на 39 листах с календарно-тематическим планированием вы можете по ссылке ниже